Понятия со словосочетанием «задача оптимизации»
Связанные понятия
Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации...
Последовательное квадратичное программирование (англ. Sequential quadratic programming (SQP)) — один из наиболее распространённых и эффективных оптимизационных алгоритмов общего назначения, основной идеей которого является последовательное решение задач квадратичного программирования, аппроксимирующих данную задачу оптимизации. Для оптимизационных задач без ограничений алгоритм SQP преобразуется в метод Ньютона поиска точки, в которой градиент целевой функции обращается в ноль. Для решения исходной...
Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности.
Риманова оптимизация — собирательное название техник для решения оптимизационных задач, заданных на римановых многообразиях.
Метод секущих плоскостей позволяет находить решение задачи целочисленного программирования как задачи линейного программирования путём добавления дополнительных ограничений. Главная идея метода — добавление ограничений, которые нарушаются для оптимума задачи линейного программирования, но остаются верными для оптимума исходной задачи.
Теорема об огибающей (англ. envelope theorem) — результат о дифференцируемости целевой функции в оптимизационных задачах с параметром. Теорема гласит, что при варьировании значения параметра, изменение целевой функции (в определённом смысле) не обусловлено изменением оптимума. Теорема важна для сравнительной статики в оптимизационных моделях.
Вычислительная топология или алгоритмическая топология — дисциплина, находящаяся на пересечении топологии, вычислительной геометрии и теории вычислительной сложности. Её основными задачами являются создание эффективных алгоритмов для решения топологических проблем и применение топологических методов для решения алгоритмических проблем, возникающих в других областях науки.
Линейно-квадратичный регулятор (англ. Linear quadratic regulator, LQR) — в теории управления один из видов оптимальных регуляторов, использующий квадратичный функционал качества. Задача, в которой динамическая система описывается линейными дифференциальными уравнениями, а показатель качества представляет собой квадратичный функционал, называется задачей линейно-квадратичного управления. Широкое распространение получили линейно-квадратичные регуляторы (LQR) и линейно-квадратичные гауссовы регуляторы...
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Позином это расширение понятия полином, как суммы мономов, с помощью расширения понятия моном. Из свойств таких обобщённых мономов следует ограничение области определения функции, задаваемой позиномом, на строго положительные значения.
Многокритериальная оптимизация, или программирование (англ. Multi-objective optimization) — это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.
Сходи́мость по ме́ре (по вероя́тности) в функциональном анализе, теории вероятностей и смежных дисциплинах — это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве).
Топологическая комбинаторика — это молодая область математики, возникшая в последней четверти 20-го века, которая занимается следующими вопросами...
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Краевая задача (граничная задача) — задача о нахождении решения заданного дифференциального уравнения (системы дифференциальных уравнений), удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Факторизация целых чисел для больших чисел является задачей большой сложности. Не существует никакого известного способа, чтобы решить эту задачу быстро. Её сложность лежит в основе некоторых алгоритмов шифрования с открытым ключом, таких как RSA.
Дискретная дифференциальная геометрия — раздел математики, в котором исследуются дискретные аналоги объектов дифференциальной геометрии: вместо гладких кривых и поверхностей рассматриваются многоугольники, полигональные сетки и симплициальные комплексы.
Алгоритм Бройдена — Флетчера — Гольдфарба — Шанно (BFGS) (англ. Broyden — Fletcher — Goldfarb — Shanno algorithm) — итерационный метод численной оптимизации, предназначенный для нахождения локального максимума/минимума нелинейного функционала без ограничений.
Ме́тод обра́тного преобразова́ния (Преобразование Н. В. Смирнова) — способ генерации случайных величин с заданной функцией распределения, путём модификации работы генератора равномерно распределённых чисел.
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
Подробнее: Аппроксимационный алгоритм
Γ-сходимость (
Гамма-сходимость) – концепция сходимости функционалов, возникающая в вариационном исчислении, а также при изучении дифференциальных уравнений в частных производных.
Метод стрельбы (краевая задача) — численный метод, заключающийся в сведении краевой задачи к некоторой задаче Коши для той же системы дифференциальных уравнений.
Конечномерный оператор — ограниченный линейный оператор в банаховом пространстве, множество значений которого конечномерно.
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Метод внутренней точки — это метод позволяющий решать задачи выпуклой оптимизации с условиями, заданными в виде неравенств, сводя исходную задачу к задаче выпуклой оптимизации.
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Корасслоение — определённый тип непрерывных отображений между топологическими пространствами с определяющим свойством, двойственным к свойству поднятия гомотопий, выполняющихся для расслоений.
Теорема о монотонной сходимости (теорема Беппо́ Ле́ви) — это теорема из теории интегрирования Лебега, имеющая фундаментальное значение для функционального анализа и теории вероятностей, где служит инструментом для доказательства многих положений. Даёт одно из условий при которых можно переходить к пределу под знаком интеграла Лебега, теорема позволяет доказать существование суммируемого предела у некоторых ограниченных функциональных последовательностей.
Двойственность, или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи (при минимизации). Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности...
Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Геометрический решатель (англ. Geometric Constraint Solver), решатель геометрических ограничений, геометрический решатель задач в ограничениях — это программная компонента, которая встраивается в САПР и позволяет инженеру точно позиционировать геометрические элементы друг относительно друга.
Быстрые алгоритмы — это область вычислительной математики, которая изучает алгоритмы вычисления заданной функции с заданной точностью с использованием как можно меньшего числа битовых операций.
Обратная задача — тип задач, часто возникающий во многих разделах науки, когда значения параметров модели должны быть получены из наблюдаемых данных.
Алгоритм Риша — алгоритм для аналитического вычисления неопределённых интегралов, использующий методы дифференциальной алгебры. Он базируется на типе интегрируемой функции и на методах интегрирования рациональных функций, корней, логарифмов, и экспоненциальных функций.
Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Квадрати́чная зада́ча о назначе́ниях (КЗН, англ. Quadratic assignment problem, QAP) — одна из фундаментальных задач комбинаторной оптимизации в области оптимизации или исследования операций, принадлежащая категории задач размещения объектов.
Многомерный комплексный анализ — раздел математики, изучающий голоморфные функции нескольких комплексных переменных, определенные в многомерном комплексном пространстве, голоморфные отображения и подмногообразия комплексного пространства. Начало систематическому изучению многомерных комплексных функций было положено К. Вейерштрассом и А. Пуанкаре в конце XIX века. А. Пуанкаре распространил на функции нескольких переменных основную теорему Коши и заложил основы многомерной теории вычетов. Методы многомерного...
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Градиентные методы — численные методы решения с помощью градиента задач, сводящихся к нахождению экстремумов функции.
Стохастическая оптимизация — класс алгоритмов оптимизации, использующая случайность в процессе поиска оптимума. Случайность может проявляться в разных вещах.
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.